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Abstract: 

Background:  The vital part of selecting the best ARIMA model that describes the historical 

pattern in the data is directly related to whether modelling diagnostic checks are performed 

well. In diagnosis checking, if the model fits well, the fundamental assumptions of the model 

are satisfied; the residuals should be independent, homogeneous, and normally distributed. 

Only if the estimated model passes all diagnostic checks should it be used for predicting and 

interpreting the future.  Methods:  When evaluating the precision of fit for an ARIMA model, 

statistical tests of the residuals are frequently performed to assess the residual assumption of 

the fitted model. As a result, tests for independence, homogeneity, and normalcy should be 

undertaken during diagnostic assessments. The purpose of this study is to investigate the 

effectiveness of diagnostic checking in selecting an optimal ARIMA model from a set of 

candidate models. A simulation examination was carried out in particular to analyze the 

likelihood of the analysis of residuals picking up the real model using statistical tests.  

Conclusion: Our simulation findings showed that the parsimony model was chosen among the 

candidate models that met all of the diagnostic checks while taking into account the 

significance of the model's coefficients and the minimum value of the Bayesian information 

criterion BIC. 

Keywords: Time Series Analysis, ARIMA models; Diagnostic checks; Residual Analysis; 

Simulation  

 

 :الملخص

 إذا بما مباشرًا ارتباطًا البيانات، في التاريخي النمط يصف الذي و ARIMA نموذج أفضل اختيار من الحيوي  الجزء يرتبط

 للبيانات، بًامناس النموذج كان إذا التشخيصي، الفحص عند.  جيد بشكل منجزة تكون  للنموذج التشخيصية الفحوصات كان

 المقدر النموذج.  بيعياط توزيعا وموزعة ومتجانسة مستقلة تكون  أن ينبغي البواقي, للنموذج الأساسية الافتراضات استيفاء يتم
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 الملاءمة دقة تقييم عند.  وتفسيره بالمستقبل للتنبؤ يستخدم سوف البواقي حول التشخيصية الفحوصات كل يحقق والذي

 .المقدر جللنموذ الافتراضات لتقييم متكرر بشكل للبواقي الإحصائية الاختبارات إجراء يتم ، ARIMA لــ المقدر النموذج

 عمليات أثناء( لطبيعيا التوزيع تتبع البواقي كانت أذا فيما ومعرفة والتجانس الاستقلالية) اختبارات إجراء ينبغي لذلك، ونتيجة

ــ الأمثل ذجنمو  اختيار في التشخيصي الفحص فعالية من التحقيق هو الدراسة هذه من الغرض.  التشخيصية التقييم  ل

ARIMA ليلتح احتمالية لتحليل الخصوص وجه على محاكاة فحص وأجري .  للبيانات المرشحة النماذج من مجموعة من 

 اختيار تم أنه ليهاإ توصلنا التي المحاكاة نتائج أظهرت.  الإحصائية الاختبارات باستخدام الحقيقي النموذج اختيار في البواقي

 معاملات هميةأ  الاعتبار في الأخذ مع صيةالتشخي الاختبارات جميع استوفت التي المرشحة النماذج بين من فقط واحد نموذج

 .BIC قيمة النموذج

  .المحاكاة ، البواقي تحليل ، الفحص ، ARIMA نمادج الزمنية، السلاسل تحليل:  الافتتاحية الكلمات

1. Introduction 

In statistics science, and in particular in the construction of statistical models for statistical 

inference, model validity is critically important to ensure accurate and unbiased statistical 

inferences. Having identified the functional relationship (model) among the variables under 

study, the next stages are to estimate the parameters included in the model and evaluate the 

adequacy of the estimated model (diagnosis checking). In diagnosis checking, if the model 

fits well, the fundamental assumptions of error of a statistical model are satisfied: the error 

should be uncorrelated (independent) with a constant variance (homogeneity) and also be 

normally distributed. If the estimated model does not fulfill at least one of the assumptions, a 

new model for the data must be specified, and the estimated and diagnosis checking cycle 

must be repeated. Only if the estimated model passes all the diagnostic checks, it should be 

used for interpretation and prediction purposes. In time series analysis, the Box-Jenkins 

approach is one of the most methods that are widely used for building a model time 

series data, commonly known as autoregressive integrated moving average ARIMA 

(p,d,q) model (Box et al., 2016), (Brocwell et al., 2016) and (Chatfield et al., 2019).  

Many researchers have used this approach in many various scientific fields (for 

example (Zhang 2003) & (Hipel et al., 1994).  These models are generally derived 

from three basic time series models: autoregressive AR (p), moving average MA (q) 

and autoregressive and moving average ARMA (p,q). In practical matters, the time 

series required in models AR, MA, and ARMA are stationary processes.  This 
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means that the mean and the variance of the time series data do not change with 

time. Therefore the ARIMA model fits the time series data generally can be 

decomposed into two parts : The first component consists an integrated (I) 

component (d) which represents the order of differencing to be performed on the 

series to transform the nonstationary data into a stationary data by using a linear 

difference equation. While the second component consists of an ARMA models 

for the stationary time series. 

To build an ARIMA model for a given time series there are three stages: model 

identification, parameter estimation and diagnostic checking (Box et al., 2016).  The 

identification stage is the first stage of the construction model, which determines the 

appropriate orders for both AR and MA terms, followed by the estimation of the 

unknown parameters included in the model. Diagnostic checking is the last stage of 

model building that consists of evaluating the adequacy of the estimated model to 

fit historical data. If the fitted model is appropriate, then the residuals estimated 

from this model should resemble that of a white noise process. 

There are two typical methods for checking the model’s assumptions. Using 

graphical approaches is the simplest method. Even while graphical approaches can 

be a useful tool and are more flexible in terms of evaluating assumptions, they are 

still difficult to interpret and do not provide clear evidence that the assumptions 

are hold.  As results, to support the graphical methods, more formal methods 

which are the numerical methods (statistical tests) should be performed before 

making any conclusion about the model’s assumptions. Both types to check the 

assumptions are typically based on an analysis of residuals which is a powerful 

and an effective tool for detecting model misspecification, including assumption 

violation.  There is a lot of available literature on diagnostic checks for ARMA 

models (Jenkins).  Diagnostic checks based on residual autocorrelation plots were 

proposed by (Mcleod et al., 1983).  If data is normally distributed, the graph of the 

cumulative distribution for the data should appear as a straight line when plotted on 

normal probability paper, according to (Chow et al., 1988).  (Ben-farage 2004) who 

using graphical methods to detecting the wrong model in time series data. (Ljung et 

al., 1978) who examined the properties of Portmanteau statistic tests for testing non 

significance of Autocorrelations between the residuals. 

The main objective of the present paper is an attempt to answer the following 

question:  Is the model diagnostic check (analysis of residuals) decisive factor in 



                                                                              
 

   150                           Efficiency of Analysis of Residuals for Selecting Time Series Models                                 

بنغازي -المجلة العلمية للجامعة المفتوحة   
Scientific Journal of Open University - Benghazi 

 الأول  العدد - الخامس المجلد
م2024  يناير  

selection an appropriate model or it should be supplemented by other criteria. In 

other word, the objective is to evaluate the performance and efficiently of analysis 

of residuals in selecting the true time series model based on a simulation. Hence, 

this work focuses on using the various models (ARMA models) including the true 

model and compare these models to obtain the model that best fit to the data 

by examining the residuals. This task may be helpful to known the reliability of 

analysis of residuals in judging the aptness of the fitted statistical model to time 

series data. 

The organization of the rest of this paper is as follows Section 2 gives a brief 

introduction to the basic concepts of time series modeling. In addition, discusses the 

properties of the diagnostic statistics of the residuals that can be used to examine the 

goodness the estimated model to the time series data. Section 3 presents the results 

of the simulation study showing the efficiency of the residual analysis in terms of 

their ability to identify the true model among various the competing time series 

models. Finally, the conclusions of the study are summarized in Section 4. 
 

2. METHODOLOGY OF RESEARCH 

This section will provide the main concepts of time series analysis, which will be an important 

tool for the analysis in this paper. 

2.1 Time Series Model: 

The Mixed Autoregressive and Moving Average Model (ARMA) is a combination 

of AR and MA models, in which the current value Xt  of the time series is 

expressed linearly in terms of its previous values as well as current and a moving 

average of the current and past white noise stochastic error terms εt.  The notation 

ARMA(p,q) refers to model with p order AR terms and q order MA terms.  Thus 

an ARMA(p,q) model is written as: 

 Xt = ∑ φiXt−i + εt +

p

i=1

∑ θjεt−j

q

j=1

 (1) 

The error terms εt are generally assumed to be independent identically distributed 

random variables (white noise) from a normal distribution with mean zero and 

constant variance σ2 . Xt−1, Xt−2, ⋯ , Xt−p,  are past series values (lags) and 

φ1, φ2, ⋯ , φp and θ1, θ2, ⋯ , θp are the corresponding parameters which are estimated 
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using maximum likelihood and conditional Least Squares approaches. 

Once the model of time series data and parameters have been estimated, the 

next issue to our concern is how to select an adequate model which describes the 

historical pattern in the time series data in order to be used for accurate forecasting.  

Diagnostic checking is the most important stage of time series model building. In 

examining the adequacy of the estimated model, an analysis of the residuals is often 

performed. Time series analysis as in all other fields of statistics the objective is to 

covert the series of data into a series of white noise (residuals), i.e. a sequence of 

independent and identically distributed (i.i.d) random variables with zero mean and 

a constant variance. If the estimation is determined to be inadequate for the data, 

the methodology of Box Jenkins adopts returning to the model identification stage 

to re-examine the appropriateness of the fitted model that requires examining the 

residuals. 

2.2 Diagnostic checking 

The appropriateness of the model is verified by employing white noise assumption 

test to check whether residuals are independent, homogeneity and normally 

distributed.  To be able to see whether residual εt is white noise or not, it can be 

done by performing several tests. In this section we present some of the commonly 

applied tests to diagnostic checks for univariate and linear time series model 

extensively for this purpose. 

Confirmation of independently Assumption.  The essential assumption of the residuals 

of an time series model are that they white noise.  A white noise is a serially 

uncorrelated variables.  If a series has a white noise it indicates uncorrelated random 

variable with a zero mean and a constant variance. In order to determine whether 

residuals are independent (white noise), the residuals autocorrelation function 

(RACF) is examined.  If the RACF is significantly different from zero, this implies 

that there is dependence between residuals.  Although, RACF is a powerful 

complementary tool for testing independence, there are several statistical tests used 

for diagnostic checking of independence and randomness.  In this study, the Ljung-

Box Q statistic and Runs tests are used.  The null hypothesis for each of these tests 

is that the residuals are independently distributed against the alternative 

hypothesis the residuals are not independently distributed; they exhibit serial 

correlation. 
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The Ljung-Box test or Q(r)  statistic suggested by (Ljung et al., 1978), is a 

portmanteau lack of fit test for checking the independently assumption.  The Q(r) 

statistic is calculated by the following equation: 

 Q(r) = n(n + 2)
∑ rk

2(a)h
k=1

n − k
 (2) 

where n is the sample size, rk
2(a) is the residual autocorrelation of order k and h is the 

number of autocorrelation lags being tested. Under the null hypothesis the Q(r) 

statistic asymptotically follows a chi-square distribution with h degrees of freedom. 

The Q(r) is compared to critical values from chi-square distribution with h degree of 

freedom.  If the model correctly specified, the residuals should be uncorrelated and 

Q(r) should be small and corresponding the probability should be large. 

The Runs test, also known as the Wald-Wolfowitz test is an non-parametric test 

(Siegel et al., 1988). This test is based on the order in which the residuals occur. A 

run is a set of sequential values of residuals that are either all above or below the 

median. To simplify computations, the residuals are first centered about their median. 

To carry out the test, the total number of runs is computed along with the number of 

positive and negative values. Let n be the number of residuals, n1 be the number of 

residuals above their median, n2 be the number below their median and R be the 

observed number of runs. When n is relatively large the distribution of number of 

run (R) is approximately asymptotically normally distributed. 

 

 
Zcal =

R − E(R)

√Var(R)
 

(3) 

The expected value E(R) and variance Var(R) of R are defined as: 

 

 E(R) =
n + 2n1n2

n
                   Var(R) =

2n1n2(2n1n2 − n)

n2(n − 1)
 (4) 

The null hypothesis is rejected if the calculated Zcal  value is greater than the 

selected critical value obtained from the standard normal distribution table. 

Confirmation of Normality Assumption. In statistic, to determine the white noise 

assumption, residuals must also meet the normal distribution.  Normal residual 



                                                                              
 

   153                           Efficiency of Analysis of Residuals for Selecting Time Series Models                                 

بنغازي -المجلة العلمية للجامعة المفتوحة   
Scientific Journal of Open University - Benghazi 

 الأول  العدد - الخامس المجلد
م2024  يناير  

i=1 

examination can be done using QQ-plot. This graph should appear as a straight line 

when it is plotted on normal probability paper. Therefore, to support the visual 

methods, more formal normality tests which are the numerical approaches should be 

performed before making any conclusion about the normality assumption. In this 

paper, Shapiro and Wilk (SW) (Shapiro et al., 1965) and Lilliefors Kolmogorov-

Smirnov (Lilliefors, et al., 1967) tests were used as alternative approaches for 

diagnostic checking for normality assumption. The null and alternative hypothesis for 

each of these tests can be written as follows : H0: The residuals of the fitted ARMA 

model are normality distributed against H1: The residuals of the fitted ARMA model 

are not normality distributed. 

 

Shapiro and Wilk (SW) is test for normality, developed by (Shapiro et al., 1965), 

has been found to be the most powerful and omnibus test in most situations.  The 

SW statistic is calculated as follows : 

 SW =
1

D
[∑ ai(X(n−i+1) − X(n)

m

i=1

)]

2

 (5) 

 

where m = n
2⁄  if n is even while m =

(n − 1)
2⁄  if n is odd and D =

∑ (x(i) − x̅)2n
i=1

 
and x(i) 

represents the ith order statistic of the residuals in the sample, the constants ai are 

given by 

 a =
m′V−1

(m′V−1V−1m)
1

2⁄
 (6) 

 

where m = (m1, m2 ⋯ , mn)′  are the expected values of the order statistics of 

independent and identically distributed random variables sampled from the standard 

normal distribution and V is the covariance matrix of those order statistics.  The 

values of W  lie between 0 and 1 and small values of the statistic indicate departure 

from normality under H0, thus, if the value of test statistic W is less than the critical 

value, null hypothesis of normality is accepted. 

Lilliefors Kolmogorov-Smirnov (LF) test is a modification of the Kolmogorov-

Smimov test. Lilliefors test is based on the maximum vertical absolute difference 
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between cumulative distribution and the Normal cumulative distribution curve (when 

the null hypothesis is that the cumulative distribution demonstrates normality). Given 

a sample of n residuals, Lilliefors statistic test is defined as (Lilliefors 1967): 

 

 D = max |Fn(x) − Sa(x, μ, σ2)| (7) 

Where Fn(∙) is the cumulative distribution function based on residuals, and Sa(x, μ, σ2) 

is the theoretical cumulative (normal) distribution function with μ and σ2, where μ and 

σ2 are, respectively, the mean and variance of the residuals. The null hypothesis at the 

level of significance α, can be rejected if the D test statistic is larger than the critical 

value D(n, α) obtained from the K-S Test table. 

Confirmation of Homogeneity Assumption. Homogeneity of variances is often a 

reference to equal variances across groups. There are many statistical tests, such as the 

analysis of variance, assume that variances are equal across groups.  In this study,  Bartlett 

(Bartlett1937) and Levenes (Levene 1960) tests were used as alternative approaches for the 

diagnostic checking of residuals for homogeneity.  We want to know whether variances 

are equal within the groups, that is to test hypothesis of variances homogeneity.  Thus 

the null for variances equality of g groups (here, g = 4) has the following form: H0: σ1
2 =

σ2
2 = ⋯ = σg

2 and alternative hypothesis for each of these tests can be written as 

follows : H1: σi
2 = σj

2 , i ≠ j where the inequality holds at least for one pair of i, j. 

 

Bartlett test statistic test has been introduced by (Bartlett1937) to test homogeneity 

of variances. the null hypothesis, H0  that all g  groups of residuals have equal 

variances against the alternative hypothesis H1 that at least the two are different.  For 

the test, the residuals from the fitted model to the data are divided into g groups 

with size ni, sample variance of the ith group 𝑆𝑖
2 and 𝑆𝑝

2 is the pooled variance, 

then Equation (8) can be used to calculate the Bartlett test statistic : 

 

 X𝑐𝑎𝑙 = ((𝑛 − 𝑔) log(𝑆𝑝
2) − ∑(𝑛𝑖 − 1)

𝑔

𝑖=1

𝑙𝑜𝑔𝑆𝑖
2)(1

+
1

3(𝑔 − 1)
(∑

1

𝑛𝑖 − 1
−

1

𝑛 − 𝑔

𝑔

𝑖=1

))−1 

(8) 
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Where  

 

𝑛 = ∑ 𝑛𝑖  𝑎𝑛𝑑  𝑆𝑝
2 =

∑ (𝑛𝑖 − 1
𝑔
𝑖=1 )𝑆𝑖

2

𝑛 − 𝑔
 

𝑔

𝑖=1

 
(9) 

 

If the assumption of homogeneity is met; the distribution of statistic for Bartletts 

test follows the Chi-squared distribution with degrees of freedom 𝑔 − 1. 

Levenes Test (LV) has been proposed by (Levene 1960) to test homogeneity of 

variances between groups. Levene’s test is an alternative to the Bartlett test.  This test 

is less sensitive than the Bartlett test to departures from normality than the Bartlett 

test. The test statistic is defined as: 

 
𝐿 =

(𝑛 − 𝑔) ∑ 𝑛𝑖(𝑌̅𝑖. − 𝑌̅..
𝑔
𝑖=1 )2

(𝑔 − 1) ∑ ∑ (𝑌𝑖𝑗 − 𝑌̅𝑖.
𝑛𝑖

𝑗=1 )2𝑔
𝑖=1

  ,      𝑌𝑖𝑗 =  |𝑋𝑖𝑗 − 𝑋𝑖.|  
(10) 

where Y̅i. is the mean of Yij  for ith  group and Y̅..  is the overall mean of the  Yij.  

Levene’s original paper only proposed using the mean as the center. (Brown et al., 1974) 

extended Levene’s (modified Levene’s) test to use either the median or the trimmed 

mean to substitute for the mean. In this paper modified Levene’s test is used. 

Box and Jenkins (Box et al., 2016) recommended that the importance of 

parsimony principle in selecting the appropriate model to the time series data. In 

term of parsimony, they expressed the need to select the optimum model that has 

fulfilled all the diagnostic checks (residuals analysis) and use as few number of 

parameters as possible of estimated model. To evaluate the models in order to 

select the best model that describes the data series adequately, the statistical criteria 

for selecting the optimum model was used. These criteria were: kaike Information 

criterion (AIC) [8], Corrected Akaike Information Criterion (AICc) (Sugiura 1978) 

and Schwarz Information Bayesian (BIC) (Schwarz 1978). The estimated model 

with minimum of these criteria assumes to describe the data series adequately. A 

brief description about the criteria for the selection of best model is given below : 

 𝐴𝐼𝐶 = −2ln (𝐿𝑚𝑎𝑥) + 2𝐾   (11) 
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𝐴𝐼𝐶𝐶 = −2 ln(𝐿𝑚𝑎𝑥) + 2𝐾 +

2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1
 (12) 

 𝐵𝐼𝐶 = −2 ln(𝐿𝑚𝑎𝑥) + 𝐾𝑙𝑛(𝑛) (13) 

Where 𝐾 is the number of parameters to be estimated and 𝐿𝑚𝑎𝑥 is the maximized 

value of the likelihood function of the fitted model.  The minimum value of this 

criterion is desirable for the adequacy of a model among all candidate models. 

 

3. RESULTS AND DISCUSSION 

Having broached the some basic concepts of time series analysis that will enable us 

analyze the time series data and build the appropriate model. We now display an 

important steps of analysis our dataset. The data were extracted from (Pristely 1981) 

which was generated from AR(1), it is defined as : Xt = 0.6Xt−1 + εt .  The 

graphical plot of the data is given in Figure 1. It is observed that the series dose 

not display considerable any fluctuations over time, where the lower values display 

considerably the same variation as the higher values.  We claim that the stationarity 

behavior of the series and a stationary model seem to be reasonable. In this study, 

we conducted simulation study to evaluate the efficiency and usefulness analysis of 

residuals, in order to make a comparison for selecting the appropriate model that fits 

the data well.  The simulation  

  

 
Figure 1 :The Simulated data generated from AR(1) 

study was conducted using the R packages. We are simulating different candidate models 

with different orders including the true model. These models were AR(1), AR(2), 

AR(3), AR(4), MA(1), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1) and 

ARMA(2,2). 
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Table 1: Summary of the statistical parameters of the fitted models. 

Model parameters Value S.E t-ratio Sig 

AR(1) 𝜑1 0.5526 0.0372 14.841 0.000 

AR(2) 𝜑1 0.5574 0.0447 12.465 0.000 

 𝜑2 -0.0086 0.0447 -0.192 0.848 

AR(3) 𝜑1 0.5572 0.0447 12.463 0.000 

 𝜑2 0.0036 0.0513 0.070 0.944 

 𝜑3 -0.0217 0.0448 -0.485 0.627 

MA(1) 𝜃1 0.4681 0.0340 13.780 0.000 

MA(2) 𝜃1 0.5371 0.0424 12.655 0.000 

 𝜃2 0.2447 0.0420 5.825 0.000 

MA(3) 𝜃1 0.5522 0.0448 12.336 0.000 

 𝜃2 0.2802 0.0452 6.196 0.000 

 𝜃3 0.1127 0.0449 2.511 0.012 

ARMA(1,1) 𝜑1 0.5426 0.0663 8.189 0.000 

 𝜃1 0.0145 0.0781 0.185 0.853 

ARMA(1,2) 𝜑1 0.5075 0.1143 4.442 0.000 

 𝜃1 0.0489 0.1205 0.406 0.685 

 𝜃2 0.0292 0.0722 0.405 0.686 

ARMA(2,1) 𝜑1 -0.4283 0.0379 -11.298 0.000 

 𝜑2 0.5339 0.0379 14.072 0.000 

 𝜃1 1.0000 0.0061 165.216 0.000 

ARMA(1,1) 𝜑1 1.1519 0.3182 3.621 0.000 

 𝜑2 -0.4043 0.1816 -2.226 0.026 

 𝜃1 -0.5933 0.3179 -1.866 0.062 

 𝜃2 0.0851 0.0870 0.978 0.328 

Figures in bold indicate to Critical values are at 5% significance level.  𝜑1, 𝜑2, 𝜑2  

are coefficients of autoregressive models; 𝜃1, 𝜃2, 𝜃3 are coefficients of moving-average 

models. 
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Table 1 display summary of results for the values of the parameters concerning with 

the fitted models associated the standard errors (S.E), t-ratios and probabilities for the 

standard errors. The results shown in Tables 1 indicate that all estimated coefficients 

of estimated models AR(1), MA(1), MA(2) and ARMA(2,1) have P-value less than 

α = 0.05. This implies that all the coefficients of these models are significant since the 

null hypothesis 𝐻0: φ = 0 for (AR) or 𝐻0: θ = 0 for (MA) can be rejected for the 

significance level 5%.  Other models tested resulted in coefficients with P-values 

higher than 0.05 and these coefficients will have little effect (over-fitting) on model 

description and prediction.  Clearly, the models AR(2) and AR(3), ARMA(1,1), 

ARMA(2,2) and ARMA(2,2) are over fitted from AR(1).  Although the estimated 

coefficients of these models are insignificant at the 5% significance level, and they 

should be eliminated of models to avoid over-fitting, these models will be used as the 

fitted model according to the purpose of study mentioned above. 

 
 

In time series, the model building methodology requires examining the residuals of 

the model to verify that the models are adequate. The residuals are examined to 

discover the residuals are white noise. Two tests, namely the Ljung-Box Q statistic 

and Runs tests are applied for the critical independence assumption of residuals for 

the best models. The results of these tests were presented in Table 2.  

Table 2: Independence (randomness) test results of the residuals for each fitted model. 

Model 
Ljung-Box statistic 

Decision
 Run test 

Decision
 

Q(h) P value Z P value 

AR(1) 29.653 0.1965 R -0.58196 0.5606 R 

AR(2) 23.5665 0.1697 R -0.6267 0.5308 R 

AR(3) 28.85 0.2258 R -0.58196 0.5606 R 

MA(1) 68.728 0.0000 NR -1.8354 0.06644 R 

MA(2) 32.97 0.1047 R -0.4029 0.687 R 

MA(3) 31.188 0.1484 R -1.1192 0.2631 R 

ARMA(1,1) 29.353 0.2071 R -0.58196 0.5606 R 

ARMA(1,2) 29.054 0.2181 R -0.76103 0.4466 R 

ARMA(2,1) 28.866 0.2252 R -1.4773 0.1396 R 

ARMA(2,2) 27.452 0.2838 R -0.58196 0.5606 R 

R: Residuals are randomness. NR: Residuals are not randomness. 
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For testing the independence based on the Run test, the results clearly showed that 

the probabilities (p-values) associated of this test exceeds significance level 0.05, 

thus indicating that the test is not significant and residuals appear to be uncorrelated.  

This implies that for all the estimated models, the residual resembles random white 

noise.  In addition, Ljung-Box-Pierce statistic is employed to check the 

independence of the residuals using the first 24 RACF from the fitted models.  The 

Ljung Box Statistic values of all the estimated models, except for MA(1) model; are 

not significantly different from zero and associated P-value greater than 0.05, thus 

failing to accept the null hypothesis of white noise. While, the estimated model 

MA(1), the Ljung-Box Q-statistic value correspond to p-values less than 0.05 

thus indicating that the test is significant and residuals appear to be correlated.  

Therefore, since Q is unduly large and the evidence contradict the hypothesis of 

white noise behaviour in the residuals, the model is not adequate and significantly 

appropriate. 

Figure 2 shows the ACF of the residuals of the true model AR(1) and candidate 

model MA(1) models.  From Figure 2, these plots was examined, for MA(1) model, 

it was clear that the ACF plot of residual shows that the residuals were not within 

the confidence intervals at lags 2 and 3 which is an indication of a misspecification of 

the model. All of these results emphasize that the RACF of MA(1) model was 

significantly different from zero. In other words, there was  

 

 

A significant linear dependence between residuals, while, for AR(1) model, the 

residuals fell within the confidence interval which is an indication of a good fit and 

the adequacy of the AR(1) model. Also, this was an indication that they were not 

(b) 3 MA(1) 

Figure 2: a) Autocorrelation function plot for the residual of AR(1) model and (b) 
Autocorrelation function plot for the residual of MA(1) model. 

(a) 

AR(1) 1 

(b) MA(1)  
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significant and that the residuals were independent and thus satisfying the residual 

assumption. 

Two approaches, namely the Lilliefors KS and Shapiro and Wilk (SW) tests, 

are applied for the normality assumption of residuals for the fitted models. The 

results of these tests are presented in Table (3). It is obvious from Table (3) that the 

probabilities of the aforementioned tests are greater than 0.05 level of significant at 

95% confidence interval. These results concerning the Lilliefors KS and SW tests 

imply that the residuals of the fitted model are normality distributed.  

 

 

 

For the selected best model, the results related to the homogeneity of variance 

of the residuals using Bartlett and Levenes test statistics are also summarized in 

Table (4). As the computed the probability values of the statistics test associated 

with these tests was greater than significance level (α = 0.05), one cannot reject 

the null hypothesis H0 (the variances equality of g groups of residuals). These 

results concerning the Bartlett test and Levenes test statistic imply that the 

residual variances are constant. Thus, these approaches satisfy condition the 

related to homogeneity of residuals (variances are constant). 

 

 

Table 3: Normality test results of the residuals for each fitted model. 

Model 
Lilliefors KS test 

Decision
 SW test 

Decision
 

KS P AD P value 

AR(1) 0.0320 0.2429 ND 0.9976 0.7 ND 

AR(2) 0.0324 0.2288 ND 0.99764 0.7099 ND 

AR(3) 0.0368 0.1036 ND 0.9976 0.6884 ND 

MA(1) 0.0279 0.4463 ND 0.99761 0.6998 ND 

MA(2) 0.0308 0.2960 ND 0.99796 0.8166 ND 

MA(3) 0.0314 0.2723 ND 0.99749 0.6594 ND 

ARMA(1,1) 0.0324 0.2305 ND 0.99764 0.7089 ND 

ARMA(1,2) 0.032404 0.2286 ND 0.9976 0.698 ND 

ARMA(2,1) 0.026789 0.5177 ND 0.9979 0.7967 ND 

ARMA(2,2) 0.034437 0.1596 ND 0.99734 0.6038 ND 

ND : Residuals are normality distributed. 
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Table 4: homogeneity test results of the residuals for each fitted model. 

Model 
Bartlett test 

Decision
 Levene’s Test 

Decision
 

B P L P value 

AR(1) 2.958 0.3981 CV 0.5645 0.6387 CV 

AR(2) 2.9976 0.392 CV 0.5649 0.6384 CV 

AR(3) 2.9566 0.3984 CV 0.5636 0.6392 CV 

MA(1) 4.0449 0.2567 CV 1.2497 0.2911 CV 

MA(2) 2.9209 0.404 CV 0.5496 0.6486 CV 

MA(3) 3.3119 0.346 CV 0.6981 0.5535 CV 

ARMA(1,1) 2.995 0.3924 CV 0.5649 0.6384 CV 

ARMA(1,2) 2.9541 0.3988 CV 0.5621 0.6403 CV 

ARMA(2,1) 3.2937 0.3485 CV 0.5342 0.659 CV 

ARMA(2,2) 3.2024 0.3615 CV 0.651 0.5826 CV 

CV: Residuals have constant variances 

 

Based on the diagnostic checks described in section 2.2, the selection of a best model 

fit to data is directly related to whether residual analysis is performed well.  From 

results above, the analysis of residual chose several models as the appropriateness 

models that fit the data well best. These models were AR(1), AR(2), AR(3), MA(2), 

MA(3), ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2), since they 

fulfilled the assumptions of being the residuals of the models were independent,  

homogeneity and normally distributed.   In contract to the MA(1) model did not 

fulfill at least one of the diagnostic checks, so it was eliminated of analysis. 

Noticeably, from the results, the residual analysis failed to pick up the true model 

AR(1) correctly. 

Table 5: Selection of Best fitted Model. 

Model LogLik ME σ2(MSR) RMSE AIC AICc BIC 

AR(1) -704.005 -0.040 0.979 0.989 1412.010 1412.034 1420.439 

AR(2) -703.987 -0.040 0.982 0.991 1413.973 1414.022 1426.617 

AR(3) -703.869 -0.041 0.983 0.992 1415.738 1415.818 1432.596 

MA(1) -724.197 -0.061 1.062 1.031 1452.395 1452.419 1460.824 

MA(2) -708.511 -0.050 0.999 0.999 1423.023 1423.071 1435.666 

MA(3) -705.357 -0.046 0.989 0.994 1418.714 1418.795 1435.572 

ARMA(1,1) -703.988 -0.040 0.982 0.991 1413.976 1414.024 1426.620 

ARMA(1,2) -703.905 -0.041 0.983 0.992 1415.811 1415.892 1432.669 

ARMA(2,1) -701.822 -0.040 0.971 0.986 1411.643 1411.724 1428.50 

ARMA(2,2) -703.560 -0.046 0.984 0.992 1417.121 1217.243 1438.195 
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Although analysis of residuals can be used to compare the overall goodness and 

adequacies of fit of candidate models, it was unable to identify the true model AR(1) 

correctly, assess the need for additional statistical criteria and selects the best 

model among all the candidate models.  In statistics, the models performance 

efficiency is evaluated using five criteria.  These criteria; namely, the Mean Square 

Error (MSE), Root Mean Square Error (RMSE), the maximized value of the log 

likelihood function of the estimated models (Loglik), the Akaike Information 

criterion (AIC), Corrected Akaike Information Criterion (AICc) and the Normalized 

Bayesian information criterion (BIC), were taken into account for obtaining a 

parsimonious model among these candidate models that fulfilling all the diagnostic 

checks.  The procedure for choosing between these candidate models relies on 

choosing the model with the maximum value LogLik and minimum values of MSE, 

RMSE, AIC, AICc and BIC. Comparison of the candidate models and  their 

corresponding values of these criteria are illustrated in Table (5). 

 

The results presented in Table (5) indicate that AR(2,1) was chosen as the 

appropriate model that fits the data well based on LogLiklood, MSE, RMSE, AIC, 

AICc, despite Bayesian information criterion (BIC) chose the model AR(1) as 

suitable model. Thus, the results showed that the AR(1) model is superior to the 

other candidate models; that fulfilled all the diagnostic checks, having the least BIC 

value. Overall, BIC outperform other criteria having low value, thus it did not failed 

to pick up the true model AR(1) correctly. Based on this model selection criteria 

BIC and analysis of residuals, we also conclude from Table 1, that the coefficient of 

the AR(1) model is significantly different from zero at 5% significant level. Thus, 

the selected parsimony model for any data set among the candidate models that 

fulfilled the diagnostic checks considering the coefficients contained in the models 

is significantly and the minimum value of Bayesian information criterion BIC. 

Figure 3 shows the performance of different criteria for candidate models. 

According to Figure 3, in general, we note that the criteria BIC is the best for 

selecting a true time series model. 
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Figure 3 the performance of different criteria for fitted time series models 

 

4. Conclusion 

This paper concerns the efficiency of the analysis of residuals in selecting an appropriate 

statistical model that describes the historical pattern in the data in order to be used for accurate 

forecasting of future data.  In time series analysis, diagnostic checking (analysis of residuals) 

in building models consists of evaluating the adequacy of the estimated model. The null 

hypothesis assumes that the fitted model is an appropriate model and the residuals behave like 

white noise series.  It was found that the analysis of residuals should not be taken as a 

final judgment about the adequacy of the estimated statistical model for the time 

series data. This study reveals that when analysis of residuals was used as the main criterion 

of diagnostic checking of the model in picking up the true model, many alternative models 

were proposed for the data, which means that the residuals analysis alone is not enough as a 

test for the goodness of the adequacy of the estimated model. In addition to that, it can be 

concluded that the analysis of residuals alone was not able to detect the wrong model when 

the order of the true model was lower than the order of the fitted model. 

The study also found that when different class of models from the true class was fitted 

to the data, analysis of residuals was not sharp enough to detect the wrong model. It 

is obvious that when the fitted model was ARMA with fitted order is lower or higher 

than the true order the analysis of residuals did not clearly to indicate wrong model.  

The main findings from this work can be summarised as follows: the analysis of 

residuals should not be the final word in examining the validity of the fitted model, 

but it should be supplemented by significant parameters and other criteria such as 

Bayesian information criteria. 
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