Js¥) amll o Gualdd) ataall § By - da gidall daalall dalad) Alaal)
02024 Scientific Journal of Open University - Benghazi

Efficiency of Analysis of Residuals for Selecting Time Series Models

(Simulation Study)

Suaad Ben-Farag Mohammed M Mekaeil
Faculty of Science Faculty of Science,
University of Benghazi, Benghazi-Libya University of Benghazi, Benghazi-Libya

suaad.benfarao@uob.edu.lv Mohmek39@amail.com

Abstract:
Background: The vital part of selecting the best ARIMA model that describes the historical

pattern in the data is directly related to whether modelling diagnostic checks are performed
well. In diagnosis checking, if the model fits well, the fundamental assumptions of the model
are satisfied; the residuals should be independent, homogeneous, and normally distributed.
Only if the estimated model passes all diagnostic checks should it be used for predicting and
interpreting the future. Methods: When evaluating the precision of fit for an ARIMA model,
statistical tests of the residuals are frequently performed to assess the residual assumption of
the fitted model. As a result, tests for independence, homogeneity, and normalcy should be
undertaken during diagnostic assessments. The purpose of this study is to investigate the
effectiveness of diagnostic checking in selecting an optimal ARIMA model from a set of
candidate models. A simulation examination was carried out in particular to analyze the
likelihood of the analysis of residuals picking up the real model using statistical tests.
Conclusion: Our simulation findings showed that the parsimony model was chosen among the
candidate models that met all of the diagnostic checks while taking into account the
significance of the model's coefficients and the minimum value of the Bayesian information
criterion BIC.
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1. Introduction

In statistics science, and in particular in the construction of statistical models for statistical
inference, model validity is critically important to ensure accurate and unbiased statistical
inferences. Having identified the functional relationship (model) among the variables under
study, the next stages are to estimate the parameters included in the model and evaluate the
adequacy of the estimated model (diagnosis checking). In diagnosis checking, if the model
fits well, the fundamental assumptions of error of a statistical model are satisfied: the error
should be uncorrelated (independent) with a constant variance (homogeneity) and also be
normally distributed. If the estimated model does not fulfill at least one of the assumptions, a
new model for the data must be specified, and the estimated and diagnosis checking cycle
must be repeated. Only if the estimated model passes all the diagnostic checks, it should be
used for interpretation and prediction purposes. In time series analysis, the Box-Jenkins
approach is one of the most methods that are widelyused for building a model time
series data, commonly known as autoregressive integrated moving average ARIMA
(p,d,q) model (Box et al., 2016), (Brocwell et al., 2016) and (Chatfield et al., 2019).
Many researchers have used this approach in many various scientific fields (for
example (Zhang 2003) & (Hipel et al., 1994). These models are generally derived
from three basic time series models: autoregressive AR (p), moving average MA (q)
and autoregressiveand moving average ARMA (p,q). In practical matters, the time
series required in models AR, MA, and ARMA are stationary processes. This
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means that the mean and the variance of thetime series data do not change with
time. Therefore the ARIMA model fits the time seriesdata generally can be
decomposed into two parts : The first component consists an integrated (I)
component (d) which represents the order of differencing to be performed on the
series totransform the nonstationary data into a stationary data by using a linear
difference equation. While the second component consists of an ARMA models
for the stationary time series.

To build an ARIMA model for a given time series there are three stages: model
identification, parameter estimation and diagnostic checking (Box et al., 2016). The
identification stage is the first stage of the construction model, which determines the
appropriate orders for both AR and MA terms, followed by the estimation of the
unknown parameters included in the model. Diagnostic checking is the last stage of
model building that consists of evaluating the adequacy of the estimated model to
fit historical data. If the fitted model is appropriate, thenthe residuals estimated
from this model should resemble that of a white noise process.

There are two typical methods for checking the model’s assumptions. Using
graphical approaches is the simplest method. Even while graphical approaches can
be a useful tool and are more flexible in terms of evaluating assumptions, they are
still difficult to interpret and donot provide clear evidence that the assumptions
are hold. As results, to support the graphical methods, more formal methods
which are the numerical methods (statistical tests) shouldbe performed before
making any conclusion about the model’s assumptions. Both types to check the
assumptions are typically based on an analysis of residuals which is a powerful
andan effective tool for detecting model misspecification, including assumption
violation.  There isa lot of available literature on diagnostic checks for ARMA
models (Jenkins). Diagnostic checks based on residual autocorrelation plots were
proposed by (Mcleod et al., 1983). If data is normally distributed, the graph of the
cumulative distribution for the data should appear as a straight line when plotted on
normal probability paper, according to (Chow et al., 1988). (Ben-farage 2004) who
using graphical methods to detecting the wrong model in time series data. (Ljung et
al., 1978) who examined the properties of Portmanteau statistic tests for testing non
significance of Autocorrelations between the residuals.

The main objective of the present paper is an attempt to answer the following

guestion: Is the model diagnostic check (analysis of residuals) decisive factor in
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selection an appropriate model or it should be supplemented by other criteria. In
other word, the objective is to evaluate the performance and efficiently of analysis
of residuals in selecting the true time series model based on a simulation. Hence,
this work focuses on using the various models (ARMA models) including the true
model and compare these models to obtain the model that best fit to thedata
by examining the residuals. This task may be helpful to known the reliability of
analysisof residuals in judging the aptness of the fitted statistical model to time
series data.

The organization of the rest of this paper is as follows Section 2 gives a brief
introduction to the basic concepts of time series modeling. In addition, discusses the
properties of the diagnostic statistics of the residuals that can be used to examine the
goodness the estimated model to the time series data. Section 3 presents the results
of the simulation study showing the efficiencyof the residual analysis in terms of
their ability to identify the true model among various the competing time series

models. Finally, the conclusions of the study are summarized in Section4.

2. METHODOLOGY OF RESEARCH

This section will provide the main concepts of time series analysis, which will be an important

tool for the analysis in this paper.

2.1 Time Series Model:
The Mixed Autoregressive and Moving Average Model (ARMA) is a combination
of AR and MA models, in which the current value X, of the time series is
expressed linearly in terms ofits previous values as well as current and a moving
average of the current and past white noise stochastic error terms €,. The notation
ARMA(p,q) refers to model with p order AR terms andqg order MA terms. Thus
an ARMA(p,q) model is written as:

p q
Xy = Z QX + & + Z 0j€c—; (1)
i=1 =1

The error terms ¢, are generally assumed to be independent identically distributed
random variables (white noise) from a normal distribution with mean zero and

. 5 .
constant variance o< . X_1,X_3, "', X¢—p, are past series values (lags) and

©1, P2, -+, Pp and 04, 0,, -+, B, are the corresponding parameters which are estimated
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using maximum likelihood and conditional Least Squares approaches.

Once the model of time series data and parameters have been estimated, the
next issue to our concern is how to select an adequate model which describes the
historical pattern in the time series data in order to be used for accurate forecasting.
Diagnostic checking is the most important stage of time series model building. In
examining the adequacy of the estimated model, an analysis of the residuals is often
performed. Time series analysis as in all other fields of statistics the objective is to
covert the series of data into a series of white noise (residuals), i.e.a sequence of
independent and identically distributed (i.i.d) random variables with zero meanand
a constant variance. If the estimation is determined to be inadequate for the data,
the methodology of Box Jenkins adopts returning to the model identification stage
to re-examinethe appropriateness of the fitted model that requires examining the
residuals.

2.2 Diagnostic checking
The appropriateness of the model is verified by employing white noise assumption
test to check whether residuals are independent, homogeneity and normally
distributed. To be able to see whether residual ¢, is white noise or not, it can be
done by performing several tests. In this section we present some of the commonly
applied tests to diagnostic checks for univariate andlinear time series model
extensively for this purpose.
Confirmation of independently Assumption. The essential assumption of the residuals
of an time series model are that they white noise. A white noise is a serially
uncorrelated variables. If a series has a white noise it indicates uncorrelated random
variable with a zero mean and a constant variance. In order to determine whether
residuals are independent (white noise), the residuals autocorrelation function
(RACF) is examined. If the RACF is significantly different from zero, this implies
that there is dependence between residuals. Although, RACF is a powerful
complementary tool for testing independence, there are several statistical tests used
for diagnostic checking of independence and randomness. In this study, the Ljung-
Box Q statistic and Runs tests are used. The null hypothesis for each of these tests
is that the residuals are independently distributed against the alternative
hypothesis the residuals are not independentlydistributed; they exhibit serial

correlation.
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The Ljung-Box test or Q(r) statistic suggested by (Ljung et al.,, 1978), is a
portmanteaulack of fit test for checking the independently assumption. The Q(r)

statistic is calculated bythe following equation:
ho 2
Q) = n(n + 2) 2L K@ @

where n is the sample size, ri (a) is the residual autocorrelation of order k and h is the
number of autocorrelation lags being tested. Under the null hypothesis the Q(r)
statistic asymptotically follows a chi-square distribution with h degrees of freedom.
The Q(r) is compared to critical values from chi-square distribution with h degree of
freedom. If the model correctly specified, the residuals should be uncorrelated and
Q(r) should be small and corresponding the probability should be large.

The Runs test, also known as the Wald-Wolfowitz test is an non-parametric test

(Siegel et al., 1988). Thistest is based on the order in which the residuals occur. A

run is a set of sequential values of residuals that are either all above or below the
median. To simplify computations, the residuals are first centered about their median.
To carry out the test, the total number of runs is computed along with the number of
positive and negative values. Let n be the number of residuals, n; bethe number of
residuals above their median, n, be the number below their median and R be the
observed number of runs. When n is relatively large the distribution of number of

run (R) is approximately asymptotically normally distributed.

Feal = v/ Var(R) ©)

The expected value E(R) and variance Var(R) of R are defined as:

n+ 2n4n 2n.n,(2n4n, — n
E(R) = 112 Var(R) = 1n2(2nyn, )
n n?(n—1)

(4)
The null hypothesis is rejected if the calculated Z., value is greater than the
selected criticalvalue obtained from the standard normal distribution table.

Confirmation of Normality Assumption. In statistic, to determine the white noise

assumption, residuals must also meet the normal distribution. Normal residual
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examination canbe done using QQ-plot. This graph should appear as a straight line
when it is plotted on normal probability paper. Therefore, to support the visual
methods, more formal normality tests which are the numerical approaches should be
performed before making any conclusion about the normality assumption. In this
paper, Shapiro and Wilk (SW) (Shapiro et al.,, 1965) and Lilliefors Kolmogorov-
Smirnov (Lilliefors, et al.,, 1967) tests were used as alternative approaches for
diagnostic checking for normality assumption. The null and alternative hypothesis for
each of these tests can be written as follows : Hy: The residuals of the fitted ARMA
model are normality distributed against H;: The residuals of the fitted ARMA model

are not normality distributed.

Shapiro and Wilk (SW) is test for normality, developed by (Shapiro et al., 1965),
has been found to be the most powerful and omnibus test in most situations. The

SW statistic is calculated as follows :

2

()

m
1
SW = D [z ai(Xm-i+1) — X))

i=1

where m = rl/2 if n is even while m = (n— 1)/2 if nisodd and D =
i=1

Yt o —%)? and xj)
represents the ith order statistic of the residuals in the sample, the constants a; are

given by

m'V-1

- (m’V‘1V‘1m)1/2

a

(6)

where m = (my, m, ---,m,)" are the expected values of the order statistics of
independent and identically distributed random variables sampled from the standard
normal distribution and V is the covariance matrix of those order statistics. The
values of W lie between 0 and 1 and small values of the statistic indicate departure
from normality under H,, thus, if the value oftest statistic W is less than the critical
value, null hypothesis of normality is accepted.

Lilliefors Kolmogorov-Smirnov (LF) test is a modification of the Kolmogorov-

Smimov test. Lilliefors test is based on the maximum vertical absolute difference
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between cumulative distribution and the Normal cumulative distribution curve (when
the null hypothesis is that the cumulative distribution demonstrates normality). Given

a sample of n residuals, Lilliefors statistic test is defined as (Lilliefors 1967):

D = max |F,(x) — S,(x, 1, 02)| (7)

Where F,(*) is the cumulative distribution function based on residuals, and S, (x, u, 6%)
is the theoretical cumulative (normal) distribution function with p and o2, where p and
o? are, respectively, the mean and variance of the residuals. The null hypothesis at the
level of significance a, can be rejected if the D test statistic is larger than the critical
value D(n, a) obtained from the K-S Test table.

Confirmation of Homogeneity Assumption. Homogeneity of variances is often a
reference to equal variances across groups. There are many statistical tests, such as the
analysis of variance, assume that variances are equal across groups. In this study, Bartlett
(Bartlett1937) and Levenes (Levene 1960) tests were used as alternative approaches for the
diagnostic checking of residuals for homogeneity. We want to know whether variances
are equal within the groups, that is to test hypothesis of variances homogeneity. Thus
the null for variances equality of g groups (here, g = 4) has the following form: Hy: 02 =

0% = = og and alternative hypothesis for each of these tests can be written as

follows : H;:0? = sz ,i # j where the inequality holds at least for one pair of i, j.

Bartlett test statistic test has been introduced by (Bartlett1937) to test homogeneity
of variances. the null hypothesis, H, that all g groups of residuals have equal
variances against the alternative hypothesis H; that at least the two are different. For
the test, the residuals from the fitted model to the data are divided into g groups
with size n;, sample variance of the ith group S? and S5 is the pooled variance,

then Equation (8) can be used to calculate the Bartlett test statistic :

g
Xeat = (0 — g)10g(53) = D (0 — DlogsH(1 ®)

g
1 1 1,
+3(g—1)(;ni—1_n—g))
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Where

n= Enl and S = X, —gl)S ®)

If the assumption of homogeneity is met; the distribution of statistic for Bartletts

test follows the Chi-squared distribution with degrees of freedom g — 1.

Levenes Test (LV) has been proposed by (Levene 1960) to test homogeneity of
variances between groups. Levene’s test is an alternative to the Bartlett test. This test
is less sensitive than the Bartlett test to departures from normality than the Bartlett
test. The test statistic is defined as:

(n—g) X, (Y —Y)? Y. = X, — X (10)

TG-DyL oy —vyr T W

where Y; is the mean of Y;; for ith group and Y is the overall mean of the Yj;.

Levene’s original paper only proposed using the mean as the center. (Brown et al., 1974)
extended Levene’s (modified Levene’s) test to use either the median or the trimmed
mean to substitutefor the mean. In this paper modified Levene’s test is used.

Box and Jenkins (Box et al., 2016) recommended that the importance of
parsimony principle in selecting the appropriate model to the time series data. In
term of parsimony, they expressed the need to select the optimum model that has
fulfilled all the diagnostic checks (residuals analysis) and use as few number of
parameters as possible of estimated model. To evaluate the models in order to
select the best model that describes the data series adequately, the statistical criteria
for selecting the optimum model was used. These criteria were: kaike Information
criterion (AIC) [8], Corrected Akaike Information Criterion (AlCc) (Sugiura 1978)
and Schwarz Information Bayesian (BIC) (Schwarz 1978). The estimated model
with minimum of these criteria assumes to describethe data series adequately. A

brief description about the criteria for the selection of best modelis given below :

AIC = —2In(Lypay) + 2K (11)
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2K(K + 1)
AICe = =21n(Lmax) + 2K +———= (12)
BIC = —2In(Lyqx) + Kin(n) (13)

Where K is the number of parameters to be estimated and L,,,, is the maximized
value of the likelihood function of the fitted model. The minimum value of this

criterion is desirable for the adequacy of a model among all candidate models.

3. RESULTS AND DISCUSSION

Having broached the some basic concepts of time series analysis that will enable us
analyze the time series data and build the appropriate model. We now display an
important steps of analysis our dataset. The data were extracted from (Pristely 1981)
which was generated from AR(1),it is defined as : X; = 0.6X,_; +&. The
graphical plot of the data is given in Figure 1. It is observed that the series dose
not display considerable any fluctuations over time, where the lower values display
considerably the same variation as the higher values. We claim that the stationarity
behavior of the series and a stationary model seem to be reasonable. In this study,
we conducted simulation study to evaluate the efficiency and usefulness analysis of
residuals, in order to make a comparison for selecting the appropriate model that fits
the data well. The simulation

Simulated-values

T T T T T T
0 100 200 300 400 500

Time

Figure 1 :The Simulated data generated from AR(1)

study was conducted using the R packages. We are simulating different candidatemodels
with different orders including the true model. These models were AR(1), AR(2),
AR(3), AR(4), MA(1), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1) and
ARMA(2,2).
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Table 1: Summary of the statistical parameters of the fitted models.

Model parameters Value S.E t-ratio Sig
AR(1) 1 0.5526 0.0372 14.841 0.000
AR(2) @4 0.5574 0.0447 12.465 0.000

©s -0.0086 0.0447 -0.192 0.848

AR(3) 01 0.5572 0.0447 12.463 0.000
®, 0.0036 0.0513 0.070 0.944

®s -0.0217 0.0448 -0.485 0.627

MA(1) 0, 0.4681 0.0340 13.780 0.000
MA(2) 6, 0.5371 0.0424 12.655 0.000

6, 0.2447 0.0420 5.825 0.000

MA(3) 6, 0.5522 0.0448 12.336 0.000

6, 0.2802 0.0452 6.196 0.000

64 0.1127 0.0449 2.511 0.012

ARMA(1,1) @1 0.5426 0.0663 8.189 0.000
6, 0.0145 0.0781 0.185 0.853

ARMA(1,2) P 0.5075 0.1143 4.442 0.000
6, 0.0489 0.1205 0.406 0.685

0, 0.0292 0.0722 0.405 0.686

ARMA(2,1) @1 -0.4283 0.0379 -11.298 0.000
©, 0.5339 0.0379 14.072 0.000

6, 1.0000 0.0061 165.216 0.000

ARMA(1,1) 01 1.1519 0.3182 3.621 0.000
®, -0.4043 0.1816 -2.226 0.026

6, -0.5933 0.3179 -1.866 0.062

0, 0.0851 0.0870 0.978 0.328

Figures in bold indicate to Critical values are at 5% significance level. ¢4, @, @,
are coefficients of autoregressive models; 8,, 8,, 65 are coefficients of moving-average

models.
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Table 2: Independence (randomness) test results of the residuals for each fitted model.

Ljung-Box statistic Run test
Model Decision Decision
Q(h) P value 4 P value
AR(1) 29.653 0.1965 R -0.58196 0.5606 R
AR(2) 23.5665 0.1697 R -0.6267 0.5308 R
AR(3) 28.85 0.2258 R -0.58196 0.5606 R
MA(1) 68.728 0.0000 NR -1.8354 0.06644 R
MA(2) 32.97 0.1047 R -0.4029 0.687 R
MA(3) 31.188 0.1484 R -1.1192 0.2631 R
ARMA(1,1) 29.353 0.2071 R -0.58196 0.5606 R
ARMA(1,2) 29.054 0.2181 R -0.76103 0.4466 R
ARMA(2,1) 28.866 0.2252 R -1.4773 0.1396 R
ARMA(2,2) 27.452 0.2838 R -0.58196 0.5606 R

R: Residuals are randomness. NR: Residuals are not randomness.

Table 1 display summary of results for the values of the parameters concerning with
the fitted models associated the standard errors (S.E), t-ratios and probabilities for the
standard errors. The results shown in Tables 1 indicate that all estimated coefficients
of estimated models AR(1), MA(1), MA(2) and ARMA(2,1) have P-value less than
a = 0.05. This implies that all the coefficients of these modelsare significant since the
null hypothesis Hy: @ = 0 for (AR) or Hy: 0 = 0 for (MA) can be rejected for the
significance level 5%. Other models tested resulted in coefficients with P-values
higher than 0.05 and these coefficients will have little effect (over-fitting) on model
description and prediction. Clearly, the models AR(2) and AR(3), ARMA(1,1),
ARMA(2,2) and ARMA(2,2) are over fitted from AR(1). Although the estimated
coefficients of these models are insignificant at the 5% significance level, and they
should be eliminated of models to avoid over-fitting, these models will be used as the

fitted model according to the purpose of study mentioned above.

In time series, the model building methodology requires examining the residuals of
the modelto verify that the models are adequate. The residuals are examined to
discover the residuals are white noise. Two tests, namely the Ljung-Box Q statistic
and Runs tests are applied for the critical independence assumption of residuals for

the best models. The results of these tests were presented in Table 2.
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For testing the independence based on the Run test, the results clearly showed that
the probabilities (p-values) associated of this test exceeds significance level 0.05,
thus indicating that the test is not significant and residuals appear to be uncorrelated.
This implies that for all the estimated models, the residual resembles random white
noise. In addition, Ljung-Box-Pierce statistic is employed to check the
independence of the residuals using the first 24 RACF from the fitted models. The
Ljung Box Statistic values of all the estimated models, except for MA(1) model; are
not significantly different from zero and associated P-value greater than 0.05, thus
failing to accept the null hypothesis of white noise. While, the estimated model
MA(1), the Ljung-Box Q-statistic value correspond to p-values less than 0.05
thus indicatingthat the test is significant and residuals appear to be correlated.
Therefore, since Q is unduly large and the evidence contradict the hypothesis of
white noise behaviour in the residuals, the model is not adequate and significantly
appropriate.
Figure 2 shows the ACF of the residuals of the true model AR(1) and candidate
modelMA(1) models. From Figure 2, these plots was examined, for MA(1) model,
it was clear that the ACF plot of residual shows that the residuals were not within
the confidence intervals at lags2 and 3 which is an indication of a misspecification of
the model. All of these results emphasize that the RACF of MA(1) model was
significantly different from zero. In other words, therewas

(@) VIA(1) (b) MA(1)

Figure 2: a) Autocorrelation function plot for the residual of AR(1) model and (b)
Autocorrelation function plot for the residual of MA(1) model.

A significant linear dependence between residuals, while, for AR(1) model, the
residuals fell within the confidence interval which is an indication of a good fit and

the adequacy of the AR(1)model. Also, this was an indication that they were not
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significant and that the residuals were independent and thus satisfying the residual
assumption.

Two approaches, namely the Lilliefors KS and Shapiro and Wilk (SW) tests,
are appliedfor the normality assumption of residuals for the fitted models. The
results of these tests are presented in Table (3). It is obvious from Table (3) that the
probabilities of the aforementioned tests are greater than 0.05 level of significant at
95% confidence interval. These results concerning the Lilliefors KS and SW tests

imply that the residuals of the fitted model are normality distributed.

Table 3: Normality test results of the residuals for each fitted model.

Model Lilliefors KS test Decision SW test Decision
KS P AD P value
AR(1) 0.0320 0.2429 ND 0.9976 0.7 ND
AR(2) 0.0324 0.2288 ND 0.99764 0.7099 ND
AR(3) 0.0368 0.1036 ND 0.9976 0.6884 ND
MA(1) 0.0279 0.4463 ND 0.99761 0.6998 ND
MA(2) 0.0308 0.2960 ND 0.99796 0.8166 ND
MA(3) 0.0314 0.2723 ND 0.99749 0.6594 ND
ARMA(1,1) 0.0324 0.2305 ND 0.99764 0.7089 ND
ARMAC(1,2) 0.032404 0.2286 ND 0.9976 0.698 ND
ARMA(2,1) 0.026789 0.5177 ND 0.9979 0.7967 ND
ARMA(2,2) 0.034437 0.1596 ND 0.99734 0.6038 ND

ND : Residuals are normality distributed.

For the selected best model, the results related to the homogeneity of variance
of the residuals using Bartlett and Levenes test statistics are also summarized in
Table (4). As the computed the probability values of the statistics test associated
with these tests was greater than significance level (o = 0.05), one cannot reject
the null hypothesis Ho (the variances equality of g groups of residuals). These
results concerning the Bartlett test and Levenes test statistic implythat the
residual variances are constant. Thus, these approaches satisfy condition the

related to homogeneity of residuals (variances are constant).
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Table 4: homogeneity test results of the residuals for each fitted model.

Model Bartlett test Decision Levene’s Test Decision
B P L P value
AR(1) 2.958 0.3981 cv 0.5645 0.6387 CcVv
AR(2) 2.9976 0.392 cv 0.5649 0.6384 CcVv
AR(3) 2.9566 0.3984 cv 0.5636 0.6392 CcVv
MA(1) 4.0449 0.2567 cv 1.2497 0.2911 CcVv
MA(2) 2.9209 0.404 cv 0.5496 0.6486 cv
MA(3) 3.3119 0.346 cv 0.6981 0.5535 cv
ARMA(1,1) 2.995 0.3924 cv 0.5649 0.6384 cv
ARMA(1,2) 2.9541 0.3988 cv 0.5621 0.6403 cv
ARMA(2,1) 3.2937 0.3485 cVv 0.5342 0.659 cv
ARMA(2,2) 3.2024 0.3615 cv 0.651 0.5826 cv

CV: Residuals have constant variances

Based on the diagnostic checks described in section 2.2, the selection of a best model

fit to data isdirectly related to whether residual analysis is performed well. From

results above, the analysis of residual chose several models as the appropriateness
models that fit the data well best. These models were AR(1), AR(2), AR(3), MA(2),
MA(@3), ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2), since they

fulfilled the assumptions of being the residuals of the models were independent,

homogeneity and normally distributed.

In contract to the MA(1) model did not

fulfill at least one of the diagnostic checks, so it was eliminated of analysis.

Noticeably, from theresults, the residual analysis failed to pick up the true model
AR(1) correctly.

Table 5: Selection of Best fitted Model.

Model LogLik ME  ¢*(MSR) RMSE AIC AlCc BIC
AR(1) -704.005  -0.040 0.979 0.989 1412.010 1412.034  1420.439
AR(2) -703.987  -0.040 0.982 0.991 1413.973 1414.022  1426.617
AR(3) -703.869  -0.041 0.983 0.992 1415.738 1415818  1432.596
MA(L) 724197  -0.061 1.062 1.031 1452.395 1452.419  1460.824
MA(2) -708.511  -0.050 0.999 0.999 1423.023 1423.071  1435.666
MA(3) -705.357  -0.046 0.989 0.994 1418.714 1418.795 1435572
ARMA(L,1) -703.988  -0.040 0.982 0.991 1413.976 1414.024  1426.620
ARMA(1,2) -703.905  -0.041 0.983 0.992 1415.811 1415892  1432.669
ARMA(2,1) -701.822  -0.040 0.971 0.986 1411.643 1411.724 1428.50
ARMA(2,2) -703.560  -0.046 0.984 0.992 1417.121 1217.243  1438.195
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Although analysis of residuals can be used to compare the overall goodness and
adequacies offit of candidate models, it was unable to identify the true model AR(1)
correctly, assess the need for additional statistical criteria and selects the best
model among all the candidate models. In statistics, the models performance
efficiency is evaluated using five criteria. These criteria; namely, the Mean Square
Error (MSE), Root Mean Square Error (RMSE), the maximized value of the log
likelihood function of the estimated models (Loglik), the Akaike Information
criterion (AIC), Corrected Akaike Information Criterion (AlCc) and the Normalized
Bayesian information criterion (BIC), were taken into account for obtaining a
parsimonious model among these candidate models that fulfilling all the diagnostic
checks. The procedure for choosing between these candidate models relies on
choosing the model with the maximum value LogLik and minimum values of MSE,
RMSE, AIC, AICc and BIC. Comparison of the candidate models and their
corresponding values of these criteria are illustrated in Table (5).

The results presented in Table (5) indicate that AR(2,1) was chosen as the
appropriate model that fits the data well based on LogLiklood, MSE, RMSE, AIC,
AlCc, despite Bayesian information criterion (BIC) chose the model AR(1) as
suitable model. Thus, the results showed that the AR(1) model is superior to the
other candidate models; that fulfilled all the diagnostic checks, having the least BIC
value. Overall, BIC outperform other criteria having low value, thus it did not failed
to pick up the true model AR(1) correctly. Based on this model selection criteria
BIC and analysis of residuals, we also conclude from Table 1, that the coefficient of
the AR(1) modelis significantly different from zero at 5% significant level. Thus,
the selected parsimony model for any data set among the candidate models that
fulfilled the diagnostic checks considering the coefficients contained in the models
is significantly and the minimum value of Bayesian information criterion BIC.
Figure 3 shows the performance of different criteria for candidate models.
According to Figure 3, in general, we note that the criteria BIC is the best for

selecting a true time series model.
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Figure 3 the performance of different criteria for fitted time series models

4. Conclusion

This paper concerns the efficiency of the analysis of residuals in selecting an appropriate
statistical model that describes the historical pattern in the data in order to be used for accurate
forecasting of future data. In time series analysis, diagnostic checking (analysis of residuals)
in building models consists of evaluating the adequacy of the estimated model. The null
hypothesis assumes that the fitted model is an appropriate model and the residuals behave like
white noise series. It was found that the analysis of residuals should not be taken as a
final judgment about the adequacy of the estimated statistical model for the time
series data. This study reveals that when analysis of residuals was used as the main criterion
of diagnostic checking of the model in picking up the true model, many alternative models
were proposed for the data, which means that the residuals analysis alone is not enough as a
test for the goodness of the adequacy of the estimated model. In addition to that, it can be
concluded that the analysis of residuals alone was not able to detect the wrong model when

the order of the true model was lower than the order of the fitted model.

The study also found that when different class of models from the true class was fitted
to the data, analysis of residuals was not sharp enough to detect the wrong model. It
is obvious that when the fitted model was ARMA with fitted order is lower or higher
than the true order the analysis of residuals did not clearly to indicate wrong model.
The main findings from this work can be summarised as follows: the analysis of
residuals should not be the final word in examining the validity of the fitted model,
but it should be supplemented by significant parameters and other criteria such as

Bayesian information criteria.
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